United States Patent

US010402589B1

(12) ao) Patent No.: US 10,402,589 B1
Madisetti et al. 45) Date of Patent: Sep. 3, 2019
(54) METHOD AND SYSTEM FOR SECURING 2013/0167109 ALl* 6/2013 Nucci oo GO6F 9/44
CLOUD STORAGE AND DATABASES FROM 717/105
INSIDER THREATS AND OPTIMIZING 2013/0219176 Al* 82013 Akella HOAL 63/0815
713/165
PERFORMANCE 2014/0164758 Al* 6/2014 Ramamurthy GOG6F 21/77
. .o . . 713/150
(71) Applicant: Vijay Madisetti, Johns Creek, GA (US) 2015/0188949 Al* 7/2015 Mahaffey HO4L. 63/20
726/1
(72) Inventors: Vijay Madisetti, Johns Creek, GA 2016/0283996 Al* 9/2016 Bakhshaie G06Q 30/0613
(US); Arshdeep Bahga, Chandigarh 2017/0041296 Al* 2/2017 GOGF 16/951
(IN) 2017/0123677 Al* 5/2017 GOG6F 16/174
2017/0180372 Al* 6/2017 GOGF 21/6209
(73) Assignee: Vijay K. Madisetti, Johns Creek, GA . .
(US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this . . .
patent is extended or adjusted under 35 Primary Examiner — Ali Shayanfar
U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm — Daniel C. Pierron;
Widerman Malek PL
(21) Appl. No.: 16/269,948
(22) Filed: Feb. 7, 2019 57 ABSTRACT
Related U.S. Application Data A method of organizing client application data including
(60) Provisional application No. 62/782,428, filed on Dec receiving an access request for data from a client applica-
0. 2018 ’ e ’ tion, deriving a tag for the access request, receiving tracing
’ ’ information related to the access request, storing the
(51) Int. CL received tracing information in a trace storage database,
GO6F 21/62 (2013.01) analyzing the trace storage database to develop updated
GO6F 16/95 (2019.01) rules, updating a storage intelligence service with the
(52) U.S.CL updated rules, mapping the access request to a correspond-
CPC ... GO6F 21/6245 (2013.01); GO6F 16/95 ing access request record, storing the mapping, receiving a
(2019.01) read access request, receiving tracing information for the
(58) Field of Classification Search read access request, and routing the client database read
CPC e GOG6F 21/6245 access request from the client application based on the rules
See application file for complete search history. stored in the storage intelligence service and the mapping
database to a corresponding cloud-based server database
(56) References Cited record, receiving data responsive to the read access request,

U.S. PATENT DOCUMENTS

9,032,017 B1* 5/2015 Singhccceovevenne GOG6F 16/182
709/203
10,055,381 B2* 8/2018 Metzler GO6F 15/17331
7
\ié
Losal Maching

defining retrieved data, and transmitting the retrieved data to
the client application.

13 Claims, 16 Drawing Sheets

113
7

Chosd

- Horage

st CRund Can stuis oioul
storege vl ditdbenes divectly

| Old

Sheet 1 0of 16

Sep'332019

1Y

i, |
y\\\ B ‘sx»vxt\x\\% esf«\».s
T -

2
{
%

I uw

Sy,
G ansddl

b .
ety

o

éﬁ{){a{ = \\\\e
ey
PR

s =

e AP OES

o AT et PRI

N AT ,,.:;;f . .:
i .
AT :

P

B st AR
e issits ks
et

vee - w pr @m N sy Wiy

U.S. Patent

US 10,402,589 B1

Sheet 2 of 16

Sep. 3, 2019

U.S. Patent

¢ Old

5%

\\)\\\\\c\\\\\w\w\\\\l\\\.@é

b Ry N
B

&
At aps asssanirrr o

......... P,

s L T

e

s

£

#
W

)

g

st b b

s

ssx\ss\mm\s"ss\sss‘»‘s\x‘s‘s‘s\“stss\\\s\!

| —

virerereer

US 10,402,589 B1

Sheet 3 of 16

Sep. 3, 2019

U.S. Patent

¢ Old

R
Lt

pezoy

P %z :
B iy ons e
Vs T e B e,
ovorFovrnssses VAR
4 7 %
Z :
% /
H :
. :
7 %
: :
RS Sy, vk\(%
;
: ~ H
rectinsasesearervin st .
7
:
S o i
% 4 i
% 7
% 7
4 z
/ b :
F %5 . 3,
7 7% w2z 4
3 ;
7 % ¢
7 % 3
A\x\\\\W\\\\‘\s\x\\\\\\ 3 224

7
%)

SRS gl B Sy ARy

US 10,402,589 B1

Sheet 4 of 16

Sep. 3, 2019

U.S. Patent

v Old

y HHY
o F

R\x\\\\\\\«.,\ﬁ.\!\\v.

ey
Fetosnr?
e
%
o 53
5 %
15 Gl
4
P> o
s
iz
7
Z %
% %
p
%

sven,
Pt
orvir?

B

R B R ~ KOV

2

S

geonee,

7

2o

US 10,402,589 B1

Sheet 5 of 16

Sep. 3, 2019

U.S. Patent

G Old

\\sy&ﬁﬁx{%&i«
%

|
\
%

4

Tt
i i
1

A

b4

B}

?@.@e%{?é&ti;&iﬁ
g 5o
7 7%, .,

yiy

GRS TSR
iy vkgpity

v VR P

el

{and) pany YOF

e

BY s BT

A

4

US 10,402,589 B1

Sheet 6 of 16

Sep. 3, 2019

U.S. Patent

9 'Old

VA R AR RS B R (R T W % 9 by

gy

#
05

o G

w

U.S. Patent

Sep. 3, 2019

Sheet 7 of 16

g

#

e L
B

%

B

%f
¥

7

558

53

s

R
Y
i
b
7

US 10,402,589 B1

FIG. 7

US 10,402,589 B1

Sheet 8 of 16

Sep. 3, 2019

U.S. Patent

8 Old

\._\i;ii.\sﬁ
YRIRHRT b

PPN g,
N\\)\ Arne,

l.\\\\){\\\\\\\\\i\\(\\\\‘

iy
3,
¥

%%

&

AR b,
s,

2

AN I EIE P NN mpy.,
» o wrtin,,

FSRIRIC) M

B ronreresnorspaneriirrt

s

K N.)\.
i #
%1% ro— ; iy W
_ } 018 o SR B
LR Y,
R T s s R

oY

2 o
] safs 3o
M PR e T mm\um,w?m“
N SEBRLE S S L T o b ‘&\mﬁwm\mw
H
7

e pa s

g

A M wﬁ % / s
4

C\\\\\\\\\\\\\.”N\\\\\\\\\w

(312

e - woREOdy

408 ;
Aoty s

g

U.S. Patent Sep. 3, 2019 Sheet 9 of 16 US 10,402,589 B1

&

&

Dt

o %
Fo
%4

s 5ok

X
s

b

%

Ry
8

»
2

it bristn

Biorane Poyioud {39 Black

FIG. 9

TLPLP et

[
§

vt g s
PO

S AR

praaaas AR N

U5t Bodel

AN T R A S 3
8§ S 8 8 B ¥
E B R R ER B

US 10,402,589 B1

Sheet 10 of 16

Sep. 3, 2019

U.S. Patent

0l Ol

A

1
‘

.

Z

§pprericrmrersstses,

\:C...\\\\\\\\\\u(\\\ -

3 erirsrecssing,
P =

P

TR SN

roe vt 4

(\»\\\x}{tﬂ.ﬁ\\s\

& 7

248 1

A

sy %

oY

S

#

#

s,

o

OIS 1y,

oissnpppis SR

ww e Ay
. e S
k< \“v\
e #3%
#H
. B
% sy v

iy

sy Py

U.S. Patent Sep. 3, 2019 Sheet 11 of 16 US 10,402,589 B1

e S Y

st s Hn

o
5

7

B
X
&g
W
S

Z

ey £

% § ‘

3§ ¥ e §

3 3 H §
N H

kS R N i

3 K H 3

3 3 H 3
N N H

X X

FIG. 11

AN
S

U.S. Patent Sep. 3, 2019 Sheet 12 of 16 US 10,402,589 B1

R

W eereroereres

i
N
N
3
ke

FIG. 12

¢ gty

U.S. Patent Sep. 3, 2019 Sheet 13 of 16 US 10,402,589 B1

L4

Ry

X

5
Sty ¥

%
g2
£

& 53
%

41

e

s
#

45

o N R
oS 3 Y
- R EN
; X 2
A RS
2 = o 8
£ X
X B & fad RN
§ 3 H § 3 §]
! i i N o
3 H H i 3 1 £
3 3 3 3 N i
N 3 H N N 3 i
¥ X ¥ § Ry L

FIG. 13

¥
3 ™~
b W
& [s
B
&
3
¥

%%

¢ rEgi

7%

e

i
e o
& &
L
X £
& >
& &
4 ke
8 ®
Y =
EN N
¥ ¥
S E

US 10,402,589 B1

Sheet 14 of 16

Sep. 3, 2019

U.S. Patent

vl Old

e \%f%..ﬁ@ ,m

Ftare 4

o BT

prir

gLt
Rl TR B

g 1141
S8 ORHUnN SOYIS DRI

. o TETT

»
orrs
winoy

M”&w@ms%
M\\%:%\%szs. gﬁm
zotY

o

EAEILY

&
§

aleang swog

g,

U.S. Patent Sep. 3, 2019 Sheet 15 of 16 US 10,402,589 B1

iy
¥

i

ERPNNN

4

nip
k£

SRR

FIG. 15

US 10,402,589 B1

Sheet 16 of 16

Sep. 3, 2019

U.S. Patent

91 9Ol

it \s\\\!a\\\\\x?\\\

7

m\é@mmﬁ@m ,

gi,& o g
vE73

oyt e
e m

a7 41

\v@v@ T,

Qnnnnnsnenannansssssesy

Arensd s SIS IED S AN I

5\\;\.\%{3 \\\v\ .W
HLLY

\fzﬁ\\

g

i

vy

BR0uS g RO M

US 10,402,589 B1

1
METHOD AND SYSTEM FOR SECURING
CLOUD STORAGE AND DATABASES FROM
INSIDER THREATS AND OPTIMIZING
PERFORMANCE

RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §
119(e) of U.S. Provisional Patent Application Ser. No.
62/782,428 filed on Dec. 20, 2018, the entire content of
which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to cloud databases and cloud
storage services where confidential and sensitive informa-
tion are stored, more specifically, to systems and methods for
securing cloud storage and databases from insider threats
and optimizing performance.

BACKGROUND

Protecting confidential and sensitive information and
digital objects (for example, digitally stored and manipu-
lated information such as database records, digital docu-
ments, files, images, and other mechanisms that may contain
information in digital form) stored in cloud storage and
cloud databases has become increasingly challenging due to
threats both internal and external to an entity that owns such
digital objects. To deliver their intended value, these digital
objects must remain available to be queried, retrieved,
updated, shared, viewed, archived, and replicated. At the
same time, the integrity of these digital objects must be
maintained and their disclosure and/or loss must be pre-
vented.

While known solutions in the art of cloud storage and
database security provide basic security features such as
access restrictions, authentication, authorization and encryp-
tion, such measures do not provide effective security mecha-
nisms to prevent theft and/or copying of digital records and
objects by insiders (i.e., persons and/or systems authorized
to access stored objects) or by outsiders (i.e., persons and/or
systems accessing these digital objects without authoriza-
tion).

Insiders or Applications or IoT devices having unre-
stricted access to the cloud storage or database storing
sensitive information (for instance, customer information,
sales information, credit card lists and health records) can
steal and leak the information to outsiders. As conducted by
either an insider or an outsider, malicious leaking of digital
objects may occur in the following forms:

a) Copying digital objects stored in cloud storage to a
local machine and then to a USB drive;

b) Copying digital objects stored in cloud storage to a
local machine and emailing them to third parties;

¢) Copying digital objects stored in cloud storage and
uploading digital objects to a cloud storage or an FTP server
not trusted by the entity to whom the digital objects belong;

d) Copying the contents of a digital object stored in cloud
storage and pasting those contents into a new digital object
(e.g., an email);

e) Copying digital objects stored in cloud storage and then
printing the contents of the digital objects;

f) Querying digital records stored in cloud databases in
bulk and making local copies of the records;

g) Creating a local replica of an entire cloud database
including all the database tables and records, and then

20

35

40

45

55

65

2

leaking them by copying such replicas to a USB drive,
emailing the replicas or uploading them to a cloud storage or
an FTP server not trusted by the entity to whom the digital
objects belong.

Maintaining confidentiality of information becomes even
more difficult when digital records and objects are shared
among multiple users authorized to work on the digital
records and objects in a collaborative manner. Existing
approaches for access control and digital object sharing do
not have the flexibility to share digital objects, such as
documents, for limited time duration. Once shared, known
solutions allow digital objects to be accessed by the receiv-
ers without workable limits. For example, revoking access to
shared digital objects is possible in solutions where a
centralized or cloud-based access control and management
system is used, and digital objects are shared from that
system. However, this approach does not prevent the
receiver from saving a copy of the digital object locally,
from copying the contents to a new digital object on the local
machine, and/or from emailing the contents to a third party.

Applications, Insiders or IoT devices having unrestricted
access to the cloud storage and databases can retrieve
sensitive information including digital records and objects.
Known access control approaches based on Access Control
Lists (ACLs) and Role-based Access Control (RBAC) sys-
tems fail to provide an effective line of defense against
leaking of digital records and objects by a malicious insider
who has the necessary authorizations to access the digital
objects, or by an outsider who illicitly gains access to the
digital objects.

Existing approaches for database security such as Data-
base Activity Monitoring (DAM) monitor all database activ-
ity in real-time and provide alerts and reports on the activity.
DAM are primarily used for compliance and monitoring
purposes and can provide alerts on activity which has
already occurred. DAM solutions can provide reports on any
violations of existing access policies. However, DAM solu-
tions are unable to enforce new access policies in real-time
or make storage allocation decisions.

Existing approaches such as Distributed Tracing that are
used for monitoring requests across a distributed system,
add headers or trace IDs and span IDs to requests. With
Distributed Tracing, we can track requests as they pass
through multiple services, emitting timing and other meta-
data throughout, and this information can then be reas-
sembled to provide a complete picture of the application’s
behavior at runtime. Distributed Tracing requires instru-
menting the application with tracing SDKs or agents. Dis-
tributed Tracing is meant only for monitoring purposes.

Existing approaches such as Software Defined Storage
(for example Veritas InfoScale) allow managing different
types of storage, including spinning disks, solid state drives
(SSDs), storage area network (SAN), direct attached storage
(DAS), and just a bunch of disks (JBOD). Software-defined
storage are designed to improve the application performance
by virtualizing the back-end storage and transforming it into
a pool of capacity that servers can utilize. Other Veritas
Software tools, including Veritas Cognitive Object Storage,
check for compliance of storage of certain types of data
according to company policies, e.g., financial information
should be stored in secure areas, but do not actively choose
or reassign storage of financial information to secure loca-
tions, for example, as envisaged by certain embodiments of
the present invention.

Existing approaches for monitoring cloud applications
and microservices, use one of the following techniques for
injecting trace IDs or intercepting requests for monitoring:

US 10,402,589 B1

3

1. APM: Application performance management (APM)
techniques require code embedded agents on all pro-
cesses that tracks code execution path.

2. Tracing SDKs and Proxies: These techniques allow
developers to embed tracing SDKs in the application
code and use them to track entry points and exit calls.
These SDKs don’t look at code execution but instead
just inject headers in requests to correlate.

3. OS Tracing: Operating systems provide various tracers
that allow tracing not just the syscalls or packets, but
also any kernel or application software.

Approaches 1 & 2 above, require instrumenting the appli-

cation, whereas approach 3 doesn’t need instrumentation.

This background information is provided to reveal infor-

mation believed by the applicant to be of possible relevance
to the present invention. No admission is necessarily
intended, nor should be construed, that any of the preceding
information constitutes prior art against the present inven-
tion.

SUMMARY OF THE INVENTION

With the above in mind, embodiments of the present
invention are related to a method and system of protecting
confidential and sensitive information and digital objects
(for example, digitally stored and manipulated information
such as database records, digital documents, files, images,
and other mechanisms that may contain information in
digital form) stored in cloud storage and cloud databases. In
certain embodiments, the present invention may provide the
following advantages:

1) Prevent loss and/or theft of digital records and objects
due to either insiders or outsiders, and without perceptible
loss of functionality relating to the digital records and
objects. Such security includes the ability to identify at an
organizational level certain threats at a particular location
and/or a particular time instant or window, or both. Such
security also employs patterns of access and/or usage as a
library of patterns to assist in threat tracking and reaction/
action based on context and threat levels.

2) Employ tracking and analytics capability within a
cloud to identify behaviors based on activities on system-
generated traces, and also for active and invasive analysis of
requests.

3) Improve the performance of cloud applications by
intelligently routing storage requests to either more faster
storage options, more secure storage options or more fault-
tolerant storage options.

4) Automatically choose storage allocation and access
based on an application’s pragma directives or configura-
tion.

5) Allow proactive action with regard to threats to digital
records and objects, including tracking of theft by insiders
and/or outsiders, and also controlling destruction of a digital
records and object prior to theft, loss, or disclosure. Both
offensive and defensive approaches may be put in place
through the use of analytics capabilities in the cloud.

The advantages described above are achieved by a secure
software optimized storage system (SOTER), and associated
methods, comprising the following components:

1) Soter Tracer: The Soter Tracer is instrumented into the
application. Tracer creates spans when database access
requests from a client application are received and attaches
headers, tags, meta-data and context information to the
spans in explicit version, or it can derive or infer “tags”
using domain intelligence in the implicit version of Soter
that can then insert these headers and meta-information

10

15

20

25

30

35

40

45

50

55

60

65

4

unknown or transparently to the application or end-client
user. The headers may be used to track requests as they pass
through multiple services, emitting timing and other meta-
data throughout, defined as tracing data, and this information
can then be reassembled to provide a complete picture of the
application’s database access query-level behavior at run-
time.

2) Soter Agent: The Soter Agent may be deployed on
every host or server. The Soter Agent listens to the tracing
data (including spans) which are injected in the instrumented
application and forwards the traces to the Collector in the
Soter Storage Intelligence service. Agent sends trace data
asynchronously and outside the critical path to the Collector
over UDP. Agent can insert these trace data in the implicit
approach, if needed. When a proxy is used to inject traces
instead of an instrumented application, the Soter Agent
listens to the tracing data (including spans) which are
injected in the intercepted requests/calls by the Soter Proxy
and forwards the traces to the Collector.

3) Soter Storage Firewall: Soter Storage firewall is
dynamic storage firewall that allows or block requests in
real-time based on the nature of the current request and
previous requests. The rules in firewall are updated based on
real-time analysis of storage & retrieval requests such that
any inappropriate, unapproved or malicious transactions,
from a single source or multiple related sources, exceeding
a threshold number of requests within a threshold time
period, can be blocked or flagged for increased monitoring.
E.g., if an insider or IOT device is trying to repeatedly query
customer database and retrieve sensitive data, in some
embodiments data of a single category or type (Social
Security numbers, phone numbers, etc.), subsequent
requests may be blocked. It is contemplated and included
within the scope of the invention that the Soter Storage
firewall may be a discrete piece of computer hardware or
may be a virtual firewall executed on a computerized device
that also executes other software.

4) Soter Storage Router: Storage Router identifies or
inserts tags/headers that are associated with storage requests
that allow it to choose between storage options such as (1)
secure areas for storage of certain types of tagged data, or (2)
faster locations for access, or (3) more fault-tolerant fea-
tures. It is contemplated and included within the scope of the
invention that the Soter Storage router may be a discrete
piece of computer hardware or may be a virtual router
executed on a computerized device that also executes other
software.

5) Soter Storage Intelligence: Trace data is collected in the
Collector component of the Soter Storage Intelligence ser-
vice. Analysis of tagged requests or trace data is done in
Analytics component of the Storage Intelligence service
which collects and analyzes the traces and then updates the
routing and firewall rules based on the analysis of requests
and application’s behavior at runtime. It is contemplated and
included within the scope of the invention that the Soter
Storage Intelligence service may be a discrete piece of
computer hardware or may be a service executed on a
computerized device that also executes other software.

6) Soter Monitoring Dashboard: The monitoring dash-
board presents real-time monitoring information on
requests, anomalous requests detected, threats identified and
blocked.

7) Soter Proxy: The Soter Proxy acts like a trusted
man-in-the-middle intercepting the storage requests or data-
base calls. The Soter proxy creates traces for the intercepted
calls and sends the traces to the Soter Agent. By using a
proxy, there is no need to instrument the application with

US 10,402,589 B1

5

tracers. The proxy is able to intercept the client-server
communication (such as database queries (n SQL, for
example) or calls and requests to store data items/objects in
a cloud database or storage) and inject traces.

While existing approaches such as Distributed Tracing are
meant only for monitoring purposes, the SOTER approach
can be used not just for observing or monitoring, but can also
play an active role through use of headers that are read and
updated along the request path. The SOTER approach also
supports tags inserted by domain experts who know certain
items need more speed, more safety, more protection, or
more fault tolerance. For example, credit card data need to
be stored in protected areas, and their transactions should be
fast. The Soter Storage Router can choose between storage
options such as Cloud Object Storage (such as AWS S3) or
NoSQL database (such as DynamoDB or MongoDB) or
SQL database (such as MySQL on RDS), within a cloud
computing environment, for instance, using these tags (ex-
plicit mechanism). Alternatively, in the implicit approach the
Soter Storage Router can derive the “tags” implicitly using
“domain information”. For example, it uses knowledge or
Artificial Intelligence (Al) to determine that “financial infor-
mation” or “personal information” must be stored in secure
containers or trusted areas, as opposed to generic program
state information that need not be stored in protected areas.

A database or cloud storage equipped with Soter compo-
nents handles the QoS issues transparently based on the
headers. Headers are used for storage (data in rest), where
the headers route the information to more secure areas, or
more fast access areas or more reliable areas or where they
can be monitored. Soter does invasive analysis and optimi-
zation and not just passive tracing of requests.

Existing approaches such as Software-defined storage can
improve the application performance by virtualizing the
back-end storage and transforming it into a pool of capacity
that servers can utilize. However, the SOTER approach
allows more fine-grained control over the storage locations
for individual data records/objects through use of headers
that are read and updated along the request path.

Additionally, embodiments of the invention are directed
to a method of organizing client application data comprising
receiving a client application database access request for
creating or modifying client application data from a client
application executing on a computerized device at a cloud-
based server, deriving a tag associated with the client
application database access request at a storage router, the
tag indicating storage requirements for at least one of
security, access speed, or fault tolerance, receiving tracing
information related to the client application database access
request at a storage intelligence service, defining received
tracing information in terms of the tag and client application
attributes comprising at least one of users, roles, privileges,
database access patterns, and usage characteristics, storing
the received tracing information in a cloud-based trace
storage database, analyzing the trace storage database to
develop updated rules for client application database access
requests, and updating the storage intelligence service with
the updated rules. The method may further comprise map-
ping the client application database access request at the
storage router to a corresponding server database access
request record created or modified responsive to the tag
derived from the client application database access request
and a rule comprised by the storage router and storing the
mapping in a cloud-based mapping database. The method
may further comprise receiving a client database read access
request from a client application, receiving tracing informa-
tion associated with the client database read access request

10

15

20

25

30

35

40

45

50

55

60

65

6

from the client application at the storage intelligence service,
and routing the client database read access request from the
client application based on the rules stored in the storage
intelligence service and the mapping database to a corre-
sponding cloud-based server database record. The method
may additionally comprise receiving data from the corre-
sponding cloud-based server database record responsive to
the client database read access request, defining retrieved
data and transmitting the retrieved data to the client appli-
cation.

In some embodiments, the step of deriving a tag associ-
ated with the client application database access request at the
storage router may comprise determining the client appli-
cation database access request does not have a tag assigned
thereto, analyzing the data comprised by the client applica-
tion database access request, and inserting a tag into the
client application database access request responsive to the
analysis of the data comprised by the client application
database access request. The step of deriving a tag associ-
ated with the client application database access request at the
storage router may comprise identifying a tag comprised by
the client application database access request.

In some embodiments, the mapping database may be
organized as a distributed hash table. The mapping database
may be replicated for fault-tolerance and availability.

In some embodiments, the method may further comprise
determining a probable future client database read access
request responsive to the tag and the tracing information
associated with the client application database access
request at the storage intelligence service.

In some embodiments, the method may further comprise
receiving a plurality of client database read access requests
from a single source at the cloud-based server, receiving
tracing information for each of the plurality of client data-
base read access requests at the storage intelligence service,
analyzing the tracing information associated with the plu-
rality of client database read access requests at the storage
intelligence service to determine if a threshold number of
requests within a threshold time period is exceeded, and,
upon determining the threshold number of requests within
the threshold time period is exceeded, flagging subsequent
client database read access requests from the source for
increased monitoring.

In some embodiments, the method may further comprise
receiving a plurality of client database read access requests
from a single source at the cloud-based server, receiving
tracing information for each of the plurality of client data-
base read access requests at the storage intelligence service,
analyzing the tracing information associated with the plu-
rality of client database read access requests at the storage
intelligence service to determine if a threshold number of
requests for read access of data a single category is
exceeded, and, upon determining the threshold number of
requests for read access of data of a single category is
exceeded, flagging subsequent client database read access
requests from the source for increased monitoring.

In some embodiments, the data comprised by either of the
client application database access request or the client
database access read request may be formatted for a first
database type, and the method may further comprise deter-
mining if the first database type matches a database type
associated with a database type of the corresponding server
database access request record and, upon determining the
first database type does not match the database type of the
corresponding server database access request record, con-
verting the first database type to a second database type that
matches the database type of the corresponding server

US 10,402,589 B1

7

database access request record. The first database and sec-
ond database types may be one of a SQL or a NoSQL type.

In some embodiments, the retrieved data may not com-
prise or may exclude information indicating a geographic
location or an internet protocol location of the server com-
prising the cloud-based server database record.

In some embodiments, receiving the client application
database access request may comprise receiving the client
application database access request at a load balancer, add-
ing tracing information to the client application database
access request responsive to receiving the client application
database access request at the load balancer, defined as load
balancer tracing information, sending the load balancer
tracing information to the storage intelligence service, send-
ing the client application database access request to an
application server of a plurality of application servers,
receiving the client application database access request at
the application server of the plurality of application servers,
adding tracing information to the client application database
access request responsive to receiving the client application
database access request at the application server, defined as
application server tracing information, and sending the
application server tracing information to the storage intelli-
gence service.

Further embodiments of the invention are directed to a
method of optimizing performance of and securing cloud
storage and databases comprising analyzing data comprised
by a data request generated by a client application by an
agent application on a computerized device, inserting a tag
into the data request responsive to the analysis of the data
comprised by the data request, the tag indicating storage
requirements for at least one of security, access speed, or
fault tolerance, identifying tracing information added to a
data request transmitted by the client application, and trans-
mitting the tracing information to a storage intelligence
service.

In some embodiments, the tracing information may be
transmitted to the storage intelligence service a pathway
other than a pathway through which the data request was
transmitted. The tracing information may comprise one or
more of a span and a trace. The agent application may be
executed by one of a client computerized device, a load
balancer, a proxy server, or an application server. The
method may further comprise adding tracing information to
the data request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of an existing approach for data
storage and with direct access to stored data, according to an
embodiment of the invention.

FIG. 2 is an illustration of an existing approach of storing
or access to stored data through a web application using
REST or SoA/SOAP, according to an embodiment of the
invention.

FIG. 3 is an illustration of the explicit version of the Soter
Software Optimized Storage approach, according to an
embodiment of the invention.

FIG. 4 is an illustration of the Soter Software Optimized
Storage approach, according to an embodiment of the inven-
tion.

FIG. 5 is an illustration of tracing requests in the Soter
Software Optimized Storage system, according to an
embodiment of the invention.

FIG. 6 is an illustration of a Trace and Span, according to
an embodiment of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 7 is an illustration of an example of instrumenting an
application and collecting traces, according to an embodi-
ment of the invention.

FIG. 8 is an illustration of the routing data to different
storage locations within the Soter system, according to an
embodiment of the invention.

FIG. 9 is an illustration of the Soter Storage Protocol
Stack, according to an embodiment of the invention.

FIG. 10 is an illustration of database activity monitoring
(old approach) and the secure software optimized storage
(new approach), according to an embodiment of the inven-
tion.

FIG. 11 is an illustration of an example of instrumenting
an application for Soter to use pragma directives to optimize
storage allocation, access, and protection parameters based
on requested tags, according to an embodiment of the
invention.

FIG. 12 is an illustration of a reference implementation of
a Soter Storage Router, according to an embodiment of the
invention.

FIG. 13 is an illustration of an example of using a Soter
Storage Router, according to an embodiment of the inven-
tion.

FIG. 14 is an illustration of the process to update the rules
in the Soter Storage Firewall and Soter Storage Router,
according to an embodiment of the invention.

FIG. 15 is an illustration of a routing table within the Soter
Storage Router, according to an embodiment of the inven-
tion.

FIG. 16 is an illustration of a using Soter Proxy as a
trusted man-in-the-middle for communication between cli-
ent and server, according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention will now be described more fully
hereinafter with reference to the accompanying drawings, in
which preferred embodiments of the invention are shown.
This invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein. Rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art. Those of ordinary skill in the art realize that
the following descriptions of the embodiments of the present
invention are illustrative and are not intended to be limiting
in any way. Other embodiments of the present invention will
readily suggest themselves to such skilled persons having
the benefit of this disclosure. Like numbers refer to like
elements throughout.

Although the following detailed description contains
many specifics for the purposes of illustration, anyone of
ordinary skill in the art will appreciate that many variations
and alterations to the following details are within the scope
of'the invention. Accordingly, the following embodiments of
the invention are set forth without any loss of generality to,
and without imposing limitations upon, the claimed inven-
tion.

In this detailed description of the present invention, a
person skilled in the art should note that directional terms,
such as “above,” “below,” “upper,” “lower,” and other like
terms are used for the convenience of the reader in reference
to the drawings. Also, a person skilled in the art should
notice this description may contain other terminology to
convey position, orientation, and direction without departing
from the principles of the present invention.

US 10,402,589 B1

9

Furthermore, in this detailed description, a person skilled
in the art should note that quantitative qualifying terms such
as “generally,” “substantially,” “mostly,” and other terms are
used, in general, to mean that the referred to object, char-
acteristic, or quality constitutes a majority of the subject of
the reference. The meaning of any of these terms is depen-
dent upon the context within which it is used, and the
meaning may be expressly modified.

Additionally, while particular computer architectures may
not be specifically disclosed for various computerized
devices, it is understood that such devices may comprise at
least a processor operable to execute commands and operate
software, including operating systems, individual programs,
services, and the like. Moreover, such computerized devices
may comprise a memory positioned in communication with
the processor operable to provide non-transitory storage of
software comprised by the computerized device. Further-
more, the such computerized devices may further comprise
a network communication device operable to send and
receive data across to a remote computerized device, in
some instances across a network. Such networks may
include personal area networks (PANs), local area networks
(LANs), wide area networks (WANS), such as the Internet,
and cellular networks, including 4G and 5G networks. Such
network communication devices include, but are not limited
to, wireless communication devices, including those con-
forming to IEEE 802.xx standards, such as Bluetooth, WiF1i,
WIMAX, and the like, Ethernet devices, serial communica-
tion devices, parallel communication devices, cellular net-
work communication devices, fiber optic communication
devices, and the like.

Referring to FIGS. 1-11, a secure software optimized
storage system (SOTER) system for securing cloud storage
and databases from insider threats and optimizing perfor-
mance, according to an embodiment of the present invention
is now described in detail. Throughout this disclosure, the
present invention may be referred to as a secure software
optimized storage system, a digital object protection system,
a management system, a protection system, an access con-
trol system, a device, a system, a product, and a method.
Those skilled in the art will appreciate that this terminology
is only illustrative and does not affect the scope of the
invention.

An embodiment of the invention, as shown and described
by the various figures and accompanying text, provides a
system and associated methods for securing cloud storage
and databases from insider threats and optimizing perfor-
mance and to achieve secure manipulation and management
of digital records and objects stored in cloud storage and
cloud databases. Those skilled in the art will appreciate that
the present invention contemplates the use of computer
instructions and/or systems configurations that may perform
any or all of the operations involved in secure digital records
and object management. The disclosure of computer instruc-
tions collectively identified by the named subsystems
described herein is not meant to be limiting in any way.
Those skilled in the art will readily appreciate that stored
computer instructions and/or systems configurations may be
configured in any way while still accomplishing the many
goals, features and advantages according to the present
invention.

Referring now to FIG. 1, an illustration of an existing
approach for data storage and with direct access to stored
data, is described in more detail. A user 100 can access cloud
storage 114 and databases 116, 118, collectively the cloud
112 directly using an authorized client 104 installed on the
user’s local machine 102. The user 100 who has unrestricted

29 <

5

10

15

20

25

30

35

40

45

50

55

60

65

10
access 106, 108, 110 to the cloud storage 114 or database
116, 118 storing sensitive information (such as customer
information, sales information, credit card lists, etc.) can
steal and leak the information to outsiders.

Referring now to FIG. 2, an illustration of an existing
approach of storing or access to stored data through a web
application using REST or SoA/SOAP, is described in more
detail. A user 150 can access 156, 166, 168, 170 data stored
in cloud storage 172 and databases 174, 176, collectively the
cloud 178, through a web application deployed on applica-
tion servers 164, in some instances via 160 an optional load
balancer or proxy server 158, in the cloud 178 through a
browser 154 installed on the user’s local machine 152. A
user (insider, application or a device) having unrestricted
access to the web-based REST/SOAP storage databases
through applications can steal and leak the enterprise or
financial information to outsiders.

Referring now to FIG. 3, an illustration of the explicit
version of the Soter Software Optimized Storage approach,
is described in more detail. An Application, Insider or IoT
device 200 accesses a client application 206 running on the
local machine 204. The client application 206 sends a
request 212 to the cloud 216 to store new data records/
objects or retrieve existing records/objects. The Soter Stor-
age Firewall 218 allows or blocks requests, or otherwise
regulates application data access in real-time based on the
nature of the current request and previous requests. In some
embodiments, requests may be flagged for enhanced, addi-
tional, or increased monitoring for potential abuse. The
allowed requests are sent 220 to the Soter Storage Router
222 which identifies or inserts tags/headers that are associ-
ated with storage requests that allow it to choose between
storage options such as (1) secure areas for storage of certain
types of tagged data, or (2) faster locations for access, or (3)
more fault-tolerant features. The Soter Storage Router 222
may route 224, 226, 228 the request to a data storage
location, such as Cloud Storage 230, an SQL Database 232
or a NoSQL Database 234. The Soter Agent 210 is deployed
on the local machine 204 along with the client application
206. The agent 210 listens 208 to the tracing data (including
spans) which are injected in the instrumented client appli-
cation 206 and forwards 214 the traces to the Collector 240
in the Soter Storage Intelligence service 238. The tracing
data may comprise at least one of users, roles, privileges,
database access patterns and usage characteristics. Agent
sends trace data asynchronously and/or outside the critical
path (e.g. utilizing different transmission resources through
the Internet) to the Collector over UDP. Agent can insert
these trace data in the implicit approach, if needed. The
collector 240 stores the trace information in trace storage
242. The Analytics component 244 analyzes the trace infor-
mation of the requests in real-time. The Analytics compo-
nent 244 may use various machine learning, deep learning
and artificial intelligence (AI) models to generate rules for
matching requests and adding new tags implicitly based on
the data within a request. For example, the Analytics com-
ponent 244 may use Al to identity application data, such as
credit card numbers being referenced, from the request data
queries and tag them implicitly as “Secure”. For the Ana-
Iytics component 244, machine learning or deep learning
models can be trained to identify malicious operations (such
as bulk querying of sensitive database records). These
models can then be used to generate new rules which are
updated 236 within the Soter Storage Firewall 218 or Soter
Storage Router 222. The Controller component 252 updates
the routing rules in the Soter Storage Router 222 and firewall
rules in the Soter Storage Firewall 218 based on the analysis

US 10,402,589 B1

11

of requests and application’s behavior at runtime, so that any
inappropriate, unapproved or malicious transactions can be
blocked. For example, if an application, insider or IoT
device is trying to repeatedly query customer database and
retrieve sensitive data, subsequent requests may be blocked.
Soter Storage Intelligence service 238 may provide various
APIs 246 for integration with other cloud services. The Soter
Monitoring Dashboard 250 can access 248 the Soter Storage
Intelligence service 238 and presents real-time monitoring
information on requests, anomalous requests detected,
threats identified and blocked.

In some embodiments, at least one of the Soter Storage
Router 222 and the Soter Storage Intelligence service 238
may be operable determine a probable future client database
read access request responsive to the tag and the tracing
information associated with the client application database
access request at the storage intelligence service. Such a
determination may result in changes to the routing of future
requests and updating of the rules accordingly.

Referring now to FIG. 4, an illustration of the Soter
Software Optimized Storage approach, is described in more
detail. An Application, Insider or IoT device 300 accesses a
web client running on the application servers 313, 314 in the
cloud computing environment 310 using a browser 306
installed on a local machine 304. The requests are sent 308
from the browser 306 to the L.oad Balancer or Proxy Server
312 which forwards 316, 318 the requests to the application
servers 313, 314. The application servers 313, 314 may
forward 310 the requests to the Soter Storage Firewall 326
which allows or block requests in real-time based on the
nature of the current request and previous requests. The
Soter Storage Firewall 326 may be selectively included or
excluded in the Soter architecture. The allowed requests are
sent 364 to the Soter Storage Router 330 which identifies or
inserts tags/headers that are associated with storage requests
that allow it to choose between storage options such as (1)
secure areas for storage of certain types of tagged data, or (2)
faster locations for access, or (3) more fault-tolerant fea-
tures. The Soter Storage Router 330 may route 366, 368, 370
the request to a data storage location, such as, for example,
Cloud Storage 334, an SQL Database 336, or a NoSQL
Database 338. In some embodiments, when data is returned
from the data storage location to the local machine 304, it
may not include/exclude location information about the data
storage location, such as, but not limited to, an internet
protocol (IP) address, a geographic location, or other iden-
tifying information about the data storage location. The
Soter Agent 360 is deployed on every host or server includ-
ing the load balancer or local proxy and the application
servers. The agent 360 listens to the tracing data (including
spans) which are injected in the instrumented client appli-
cation and forwards 320, 322, 324 the traces to the Collector
342 in the Soter Storage Intelligence service 340. Agent 360
sends trace data asynchronously and outside the critical path
to the Collector 342 over UDP. Agent 360 can insert these
trace data in the implicit approach, if needed. The Collector
342 stores the trace information in trace storage 344, a
cloud-based database. The Analytics component 346 ana-
lyzes the trace information of the requests in real-time. The
Analytics component 346 may use various machine learn-
ing, deep learning and artificial intelligence (AI) models to
generate rules for matching requests and adding new tags
implicitly based on the data within a request. For example,
the Analytics component 346 may use Al to identify credit
card numbers from the requested application data accesses
and tag them implicitly as “Secure”. For the Analytics
component 346, machine learning or deep learning models

10

15

20

25

30

35

40

45

50

55

60

65

12

can be trained to identify malicious operations (such as bulk
querying of sensitive database records). These models can
then be used to generate new rules which are updated 328,
332 within the Soter Storage Firewall 326 or Soter Storage
Router 330. The Controller component 362 updates the
routing rules in the Soter Storage Router 330 and firewall
rules in the Soter Storage Firewall 326 based on the analysis
of requests and application’s behavior at runtime, so that any
inappropriate, unapproved or malicious transactions can be
blocked. For example, if an application, insider or IoT
device is trying to repeatedly query customer database and
retrieve sensitive data, subsequent requests may be blocked.
Soter Storage Intelligence service 340 may provide various
APIs 348 for integration with other cloud services. The Soter
Monitoring Dashboard 350 may access 372 the Soter Stor-
age Intelligence service 340 and presents real-time moni-
toring information on requests, anomalous requests
detected, threats identified and blocked.

Referring now to FIG. 5, an illustration of tracing requests
in the Soter Software Optimized Storage system, is
described in more detail. A client 400 sends an HI'TP GET
request 402 to retrieve records from a database. When the
request reaches the load balancer 406, the Soter agent on the
load balancer injects tracing information to the request. The
tracing information may include the following:

a) Span: A span is a logical operation such as a method
call or HTTP RESTHul call. A span has a start and end time.
Spans may define relationship to other spans (parent/child).
Span is identified by a Span-ID.

b) Trace: Trace is a set of spans associated with the same
request. Trace is identified by a Trace-ID. The Trace-1D
remains the same as request propagates through various
services.

¢) Context/Meta-data: In addition to Trace and Span 1Ds,
additional meta-data or context information related to the
request may be propagated across spans. Meta-data related
to speed, fault tolerance, security, traceability, chose storage
allocation, and access based on application’s requirements.

The optional load balancer 406 forwards 408 the GET
request 402 to the application server-1 410. The application
server-1 410 then sends 412 the request to the database 414.
The same process is followed for the PUT request-2 404 sent
404 by the client 400 to put an object to a cloud storage.
When the request reaches the load balancer 406, the Soter
Agent on the load balancer injects tracing information to the
request. The load balancer 406 forwards 416 the PUT
request 404 to the application server-3 418. The application
server-3 418 then sends 420 the request to the cloud storage
422. At each step, the tracing information is updated as a
request propagates through multiple services emitting tim-
ing and other meta-data throughout.

Referring now to FIG. 6, an illustration of a Trace and
Span, according to an embodiment of the invention. A span
is a logical operation and has a start and end time. A trace
502 is a collection of spans 506, 508, 510 and 512.

Referring now to FIG. 7, an illustration of an example of
instrumenting an application and collecting traces, is
described in more detail. As an Inbound Request 550 arrives
a host or server 552, the instrument application 554 running
on the host or server 552 injects tracing information 556 to
the request. The inbound request may already contain trac-
ing information such as Trace 1D, Context and Headers,
which is propagated to the Outbound Request 560. The Soter
Agent 558 installed on the host or server 552, sends 562 the
trace information to the Collector 566 over UDP in the Soter
Storage Intelligence Service 564. The Collector 566 stores
the trace information in trace storage 568. The span context

US 10,402,589 B1

13

(including span ID, trace 1D, tags) are propagated from the
incoming request to outgoing request. All other tracing
information (such as span operation name and span logs) are
not propagated. Instead the sampled tracing information is
transmitted out of process asynchronously, in the back-
ground, to Soter Agents.

Referring now to FIG. 8, an illustration of the routing data
to different storage locations within the Soter system, is
described in more detail. An application 601 running on a
client computer 600 sends 602 Digital Records or Objects to
be stored in the cloud. The requests to store the records or
objects are interpreted by the Soter Storage Router 604
which routes 606, 608, 610, 612 to the request to the
appropriate storage location such as a Cloud File Storage
614, Cloud Object Storage 616, SQL Database 618 or a
NoSQL Database 620.

Referring now to FIG. 9, an illustration of the Soter
Storage Protocol Stack, is described in more detail. The
Soter Secure Software Optimized Storage system may use a
Storage Protocol stack or model as shown in FIG. 9 which
is analogous to a TCP/IP model (714-724), which itself
conforms to an OSI Model (700-712). The Storage Protocol
(SP) stack may include the following layers:

a) Application Layer 726: At the application layer 726, the
data to be stored is encoded and sent over an HTTP (REST)
call to an SP Address

b) Storage Control Protocol (SCP) Layer 728: The SCP
Layer 728 splits the data into manageable chunks and adds
port number information. SCP layer 728 specifies the Appli-
cation to Cloud Storage/Database Transport.

¢) Storage Protocol (SP) Layer 730: adds SP addresses
stating where the data is from and where it is going. This
layer defines structures to identify type of data (Hot/Cold,
Fast/Slow, etc.) and the Quality of Service (QoS).

d) Network Layer 732: The network layer 732 defines the
addressing and routing structures used in Storage Control
Protocol (SCP) 728 which are used to route data from
program variables over cloud to a particular database or
storage.

e) Physical Layer 734: The Physical layer 734 adds the
actual memory address structure (Parity, Encryption, Rep-
lication, Security Features) and specifies which device the
data came from, and which device the message the data is
going.

Soter Extensions—Can use a Storage Stack, that is mod-
eled after the TCP/IP stack, but instead is used to route
data/information to storage endpoint. This storage stack can
be encapsulated and/or tunneled over TCP/UDP/MPLS/IP
stack and TLS type secure networking protocols.

Referring now to FIG. 10, a comparison of database
activity monitoring (old approach) and the secure software
optimized storage (new approach), is described in more
detail. Existing approaches such as Database Activity Moni-
toring (DAM) monitor all database activity in real-time and
provide alerts and reports on the database activity. DAM
solutions implement monitoring using the following
approaches: (a) at the network-level by detecting the SQL
commands used, (b) using agents installed on the database
which record and report database access information, (c)
using a proxy which intercepts all the incoming and outgo-
ing commands to a database. In a DAM approach, client
computers 800, 802, 804 make requests 806, 808, 810 to an
application server 812. The application server 812 sends 818
commands to access the database 820 to retrieve the infor-
mation requested by the clients, update the information or
create new records. A database activity monitor 814 moni-
tors 816 the requests to the database using one of three

10

15

20

25

30

35

40

45

50

55

60

65

14

approaches (network-level, agent or proxy) described above.
While, DAM solutions can provide reports on any violations
of existing access policies, however, they are unable to
enforce new access policies in real-time.

In the secure software optimized storage system (SOTER)
approach, client computers 850, 852, 854 make requests
856, 858, 860 to an application server 861. A Soter Agent
863 installed on the application server 861 listens to the
tracing data which are injected in the instrumented applica-
tion that runs on the application server 861, and forwards
866 the traces to the Collector 868 in the Soter Storage
Intelligence service 878. Agent sends trace data asynchro-
nously and outside the critical path to the Collector 868 over
UDP. Agent can insert these trace data in the implicit
approach, if needed. The application server 861 forwards the
incoming requests for accessing information, updating infor-
mation or create new records/objects to the Soter Storage
Router 874. An optional Soter Storage Firewall 864 stands
between the application server 861 and the Soter Storage
Router 874. The Soter Storage Firewall 864 allows or block
requests in real-time based on the nature of the current
request and previous requests. The rules in Soter Storage
Firewall 864 and Soter Storage Router 874 are updated by
the Soter Storage Intelligence service 878 based on real-time
analysis of storage and retrieval requests such that any
inappropriate, unapproved or malicious transactions can be
blocked. The Controller component 902 updates the routing
rules in the Soter Storage Router 874 and firewall rules in the
Soter Storage Firewall 864 based on the analysis of requests
and application’s behavior at runtime, so that any inappro-
priate, unapproved or malicious transactions can be blocked.
The Soter Storage Router 874 identifies or inserts tags/
headers that are associated with storage requests that allow
it to choose between storage options such as (1) secure areas
for storage of certain types of tagged data, or (2) faster
locations for access, or (3) more fault-tolerant features. The
Soter Storage Router 874 forwards the data storage or
retrieval requests to Cloud Storage 886, SQL Database 888
or NoSQL Database 890. The functionality of the Soter
Storage Firewall 864 may be integrated with that of the Soter
Storage Router 874 in certain embodiments. Soter Storage
Intelligence service 878 may provide various APIs 882 for
integration with other cloud services. The Soter Monitoring
Dashboard 884 can access 900 the Soter Storage Intelligence
service 878 and presents real-time monitoring information
on requests, anomalous requests detected, threats identified
and blocked.

Referring now to FIG. 11, an illustration of an example of
instrumenting an application for Soter to use pragma direc-
tives to optimize storage allocation, access, and protection
parameters based on requested tags, is described in more
detail. At step 652 the Soter Python library is imported. At
step 654, the Soter Tracer is initialized. Next, a span is
created at step 656. At step 658, a storage tag (e.g. “hot”,
“cold”, “fast” or “secure”) is set in the span (explicit
approach). At step 660, tags are inferred and set implicitly
(implicit approach). At step 662, the span context (including
span ID, trace ID and tags) are injected into HTTP request
headers. The explicit and implicit tags are interpreted by the
Soter Router to route the storage request. At step 664, a
request to store a data item is sent.

Referring now to FIG. 12, a reference implementation of
a Soter Storage Router, is described in more detail. The
program 1000 is a Python implementation of a SoterRouter
class. The function for initializing the Soter Router is
implemented at step 1002. At 1004, the function for binding
and listen for incoming requests within the Soter Router is

US 10,402,589 B1

15

implemented. At step 1006, the function for accepting an
incoming request is implemented. The function for sending
data to a storage target is implemented at step 1008.

Referring now to FIG. 13, an example of using a Soter
Storage Router, is described in more detail. At step 952, the
Soter Router class is imported. At step 954, the storage
targets for Soter Router are initialized. In this example, two
storage targets are initialized at step 956 (Amazon S3 cloud
storage target) and step 958 (Amazon DynamoDB NoSQL
database target). At step 960, the Soter Router is initialized.
At step 962, the Soter Router is set to listen for incoming
requests. Incoming requests are accepted at step 964. At step
966, the send function of the Soter Router class is called to
send data to a storage target. The storage target is selected
by the Soter Router based on analysis of implicit or explicit
tags in the request.

Referring now to FIG. 14, an illustration of the process to
update the rules in the Soter Storage Firewall and Soter
Storage Router, is described in more detail. The Collector
component 1116 within the Soter Storage Intelligence ser-
vice 1106, collects the trace data sent by various Soter agents
and stores the data in the Storage component 1114. Analysis
of trace data is done in Analytics component 1110. The
Analytics component 1110 may use various machine learn-
ing, deep learning and artificial intelligence (AI) models to
generate rules for matching requests and adding new tags
implicitly based on the data within a request. For example,
the Analytics component 1110 may use Al to identify credit
card numbers from the request data and tag them implicitly
as “Secure”. For the Analytics component 1110, machine
learning or deep learning models can be trained to identify
malicious operations (such as bulk querying of sensitive
database records). These models can then be used to gen-
erate new rules which are updated within the Soter Storage
Firewall 1100 or Soter Storage Router 1102. The Controller
component 1108 updates 1122, 1120 the routing rules in the
Soter Storage Router 1102 and firewall rules in the Soter
Storage Firewall 1122 based on the analysis of requests and
application’s behavior at runtime. These rules can regulate
the updates and accesses 1104 to sensitive data stored within
the storage targets managed by the Soter system (such as a
cloud object storage, cloud file storage, cloud SQL database
and cloud NoSQL database).

Referring now to FIG. 15, an illustration of a routing table
within the Soter Storage Router, is described in more detail.
A routing table 1152 within a Soter Storage Router 1150
comprises Rules 1154, Actions 1156 and Statistics 1158.
Rules 1154 are used for matching incoming requests based
on the tags and headers in the requests. Actions 1156 define
the set of instructions to apply to matching requests. For
example, send a data storage request tagged as “Fast” to a
Cloud NoSQL Database and a data storage request tagged as
“Cold” to a Cloud Object Storage. A routing table 1152 may
maintain various statistics and counters 1158 such as number
of requests matched, number of requests with a specific tag
and so on. The Soter Router 1150 maintains a mapping table
1164 which contains the mappings of records to the storage
targets/locations 1168 managed by a Soter system. This
mapping table can be implemented in many ways, as known
to one of ordinary skill in the art, including but not limited
to a distributed hash table, or a list, or a lookup table, that
may be also be replicated at origin servers or edge servers
within a content delivery network (CDN) such as those
offered by Akamai (https://www.akamai.com/us/en/cdn/).
When an application sends requests to store, create, or
modify a data record/object the Soter Storage Router 1150
may assign the record/object 1160 to a storage target (such

10

15

20

25

30

35

40

45

50

55

60

65

16

as cloud object storage, cloud file storage, cloud SQL
database or cloud NoSQL database) based on the tags 1166
and headers attached to the application data request and the
type 1162 of application data. The Soter Storage Router
1150 maintains mappings of records 1160 to storage loca-
tions 1168 in a cloud-based mapping database. These map-
pings are used when the application sends requests for
querying specific data records/objects using typical struc-
tures, such as a Distributed Hash Table, as known to
practitioners in the related arts. The Soter Storage Router
1150 can scramble the mappings and store them in an
encrypted form to make it secure from snooping. The Soter
Storage Router 1150 may maintain default mappings for
certain types of requests. For example, all SQL requests to
store or update data records can be mapped to the SQL
database being managed by the Soter system. The Soter
Storage Router 1150 also contains Translations and Cross-
Mappings 1170 for translating requests from one format to
another (such as SQL to NoSQL). For example, translation
of'an SQL request to insert a data record in an SQL database
to a NoSQL database specific request.

Referring now to FIG. 16, an illustration of using Soter
Proxy as a trusted man-in-the-middle for communication
between client and server, is described in more detail. In
client-server communication approach without a proxy, the
client 1206 running on a local machine 1204 of an applica-
tion, insider, or IoT device 1200 communicates 1208 with
the server deployed in a Cloud 1210. In client-server com-
munication approach with a proxy, the Soter Proxy 1230 is
used to intercept the client-server communication 1228
(such as database calls and requests to store data items/
objects in a cloud database or storage) received from a client
1226 running on a client machine 1224 of an application,
insider, or IoT device 1220. The Soter Proxy 1230 acts like
a trusted man-in-the-middle intercepting the storage (create
or modify) requests or database calls to allocated storage and
also later manage read access requests to application data.
The Soter proxy creates traces for the intercepted calls and
sends 1238 the traces to the Soter Agent 1236 which is also
installed on the host machine 1224. The Soter Agent 1236
listens to the tracing data (including spans) which are
injected in the intercepted requests/calls by the Soter Proxy
and forwards 1240 the traces to the Soter Collector deployed
in the Cloud 1234. Agent sends trace data asynchronously
and outside the critical path 1232 to the Collector over UDP.
Agent can insert these trace data in the implicit approach, if
needed.

That which is claimed is:
1. A method of organizing client application data com-
prising:
receiving a client application database access request for
creating or modifying client application data from a
client application executing on a computerized device
at a cloud-based server;
deriving a tag associated with the client application data-
base access request at a storage router, the tag indicat-
ing storage requirements for at least one of security,
access speed, or fault tolerance, comprising:
determining if the client application database access
request has a tag assigned thereto;
upon determining the client application database access
request has a tag assigned thereto, identifying the tag
assigned to the client application database access
request; and
upon determining the client application database access
request does not have a tag assigned thereto:

US 10,402,589 B1

17

determining the client application database access
request does not have a tag assigned thereto;
analyzing the data comprised by the client applica-
tion database access request; and
inserting a tag into the client application database
access request responsive to the analysis of the
data comprised by the client application database
access request;
receiving tracing information related to the client appli-
cation database access request at a storage intelligence
service, defining received tracing information in terms
of' the tag and client application attributes comprising at
least one of users, roles, privileges, database access
patterns and usage characteristics;
storing the received tracing information in a cloud-based
trace storage database;
analyzing the trace storage database to develop updated
rules for client application database access requests;
updating the storage intelligence service with the updated
rules;
mapping the client application database access request at
the storage router to a corresponding server database
access request record created or modified responsive to
the tag derived from the client application database
access request and a rule comprised by the storage
router;
storing the mapping in a cloud-based mapping database;
receiving a client database read access request from a
client application;
receiving tracing information associated with the client
database read access request from the client application
at the storage intelligence service; and
routing the client database read access request from the
client application based on the rules stored in the
storage intelligence service and the mapping database
to a corresponding cloud-based server database record;
receiving data from the corresponding cloud-based server
database record responsive to the client database read
access request, defining retrieved data; and
transmitting the retrieved data to the client application.
2. The method of claim 1 wherein the mapping database
is organized as a distributed hash table.
3. The method of claim 1 wherein the mapping database
is replicated for fault-tolerance and availability.
4. The method of claim 1 further comprising determining
a probable future client database read access request respon-
sive to the tag and the tracing information associated with
the client application database access request at the storage
intelligence service.
5. The method of claim 1 further comprising:
receiving a plurality of client database read access
requests from a single source at the cloud-based server;
receiving tracing information for each of the plurality of
client database read access requests at the storage
intelligence service;
analyzing the tracing information associated with the
plurality of client database read access requests at the
storage intelligence service to determine if a threshold
number of requests within a threshold time period is
exceeded; and
upon determining the threshold number of requests within
the threshold time period is exceeded, flagging subse-
quent client database read access requests from the
source for increased monitoring.
6. The method of claim 1 further comprising:
receiving a plurality of client database read access
requests from a single source at the cloud-based server;

25

30

35

40

45

50

60

18

receiving tracing information for each of the plurality of
client database read access requests at the storage
intelligence service;

analyzing the tracing information associated with the

plurality of client database read access requests at the
storage intelligence service to determine if a threshold
number of requests for read access of data a single
category is exceeded; and

upon determining the threshold number of requests for

read access of data of a single category is exceeded,
flagging subsequent client database read access
requests from the source for increased monitoring.

7. The method of claim 1 wherein the data comprised by
either of the client application database access request or the
client database access read request is formatted for a first
database type, further comprising:

determining if the first database type matches a database

type associated with a database type of the correspond-
ing server database access request record; and
upon determining the first database type does not match
the database type of the corresponding server database
access request record, converting the first database type
to a second database type that matches the database
type of the corresponding server database access
request record.
8. The method of claim 7 wherein the first database and
second database types may be one of a SQL or a NoSQL
type.
9. The method of claim 1 wherein the retrieved data does
not comprise information indicating a geographic location or
an internet protocol location of the server comprising the
cloud-based server database record.
10. The method of claim 1 wherein receiving the client
application database access request comprises:
receiving the client application database access request at
a load balancer;

adding tracing information to the client application data-
base access request responsive to receiving the client
application database access request at the load balancer,
defined as load balancer tracing information;

sending the load balancer tracing information to the

storage intelligence service;

sending the client application database access request to

an application server of a plurality of application serv-
ers;

receiving the client application database access request at

the application server of the plurality of application
servers;

adding tracing information to the client application data-

base access request responsive to receiving the client
application database access request at the application
server, defined as application server tracing informa-
tion; and

sending the application server tracing information to the

storage intelligence service.

11. A method of organizing client application data com-
prising:

receiving a client application database access request for

creating or modifying client application data from a
client application executing on a computerized device
at a cloud-based server;

deriving a tag associated with the client application data-

base access request at a storage router, the tag indicat-
ing storage requirements for at least one of security,
access speed, or fault tolerance, comprising:

US 10,402,589 B1

19

determining whether the client application database
access request does or does not have a tag assigned
thereto;
upon determining the client application database access
request does not have a tag assigned thereto:
analyzing the data comprised by the client applica-
tion database access request; and
inserting a tag into the client application database
access request responsive to the analysis of the
data comprised by the client application database
access request; and
upon determining the client application database access
request does have a tag assigned thereto, identitying
the tag comprised by the client application database
access request;
receiving tracing information related to the client appli-
cation database access request at a storage intelligence
service, defining received tracing information in terms
of' the tag and client application attributes comprising at
least one of users, roles, privileges, database access
patterns, and usage characteristics;
storing the received tracing information in a cloud-based
trace storage database;
analyzing the trace storage database to develop updated
rules for client application database access requests;
updating the storage intelligence service with the updated
rules;
mapping the client application database access request at
the storage router to a corresponding server database
access request record created or modified responsive to
the tag derived from the client application database
access request and a rule comprised by the storage
router;
storing the mapping in a cloud-based mapping database;
receiving a client database read access request from a
client application;
receiving tracing information associated with the client
database read access request from the client application
at the storage intelligence service; and
routing the client database read access request from the
client application based on the one or more rules stored
in the storage intelligence service and the mapping
database to a corresponding cloud-based server data-
base record;

5

20

25

30

35

40

20

receiving data from the corresponding cloud-based server
database record responsive to the client database read
access request, defining retrieved data; and
transmitting the retrieved data to the client application.
12. The method of claim 11 wherein the data comprised
by either of the client application database access request or
the client database access read request is formatted for a first
database type, further comprising:
determining if the first database type matches a database
type associated with a database type of the correspond-
ing server database access request record; and
upon determining the first database type does not match
the database type of the corresponding server database
access request record, converting the first database type
to a second database type that matches the database
type of the corresponding server database access
request record.
13. The method of claim 11 wherein receiving the client
application database access request comprises:
receiving the client application database access request at
a load balancer;
adding tracing information to the client application data-
base access request responsive to receiving the client
application database access request at the load balancer,
defined as load balancer tracing information;
sending the load balancer tracing information to the
storage intelligence service;
sending the client application database access request to
an application server of a plurality of application serv-
ers;
receiving the client application database access request at
the application server of the plurality of application
servers;
adding tracing information to the client application data-
base access request responsive to receiving the client
application database access request at the application
server, defined as application server tracing informa-
tion; and
sending the application server tracing information to the
storage intelligence service.

#* #* #* #* #*

